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Dielectric and transport properties of a supercooled symmetrical molten salt

S. D. Wilke, H. C. Chen, and J. Bosse*
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The liquid-glass transition of the restricted primitive model for a symmetrical molten salt is studied using
mode-coupling theory. The transition at high densities is predicted to obey the Lindemann criterion for melt-
ing, and the charge-density peak found in neutron-scattering experiments on ionic glass formers is qualitatively
reproduced. Frequency-dependent dielectric functions, shear viscosities, and dynamical conductivities of the
supercooled liquid are presented. Comparing the latter to the diffusion constant, we find that mode-coupling
theory reproduces the Nernst-Einstein relation. The Stokes-Einstein radius is found to be approximately equal
to the particle radius only near the high-density glass transition.@S1063-651X~99!08609-2#

PACS number~s!: 64.70.Pf, 66.10.2x, 66.20.1d
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I. INTRODUCTION

Ionic glasses have potentially important technological
plications, for example, as glassy ionic conductors in so
state batteries. However, there has been only slow prog
in the theoretical understanding of these systems and
properties so far. Two major difficulties have impeded t
investigation of ionic glasses: First, glasses in general
systems far from thermodynamic equilibrium and, therefo
generally require sophisticated concepts of statistical
chanics. In addition, ionic systems in particular cause furt
theoretical complications since they contain two or more d
ferent particle species.

A breakthrough concerning the first problem was the
plication of mode-coupling theory~MCT! to the liquid-glass
transition@1,2#. Explaining the transition as induced by no
linear feedback processes, MCT has led to consider
progress in the research on glasses formed from simple f
ile liquids ~see, e.g., Ref.@3#!. Soon after the pioneering pa
pers of MCT were published, the theory was extended
multicomponent~including ionic! systems. The first ionic
liquid discussed within the framework of MCT was a syste
of oppositely charged, but otherwise identical particles—
so-called symmetrical molten salt~SMS! @4–7#. However,
the discussion was carried out using only a ‘‘schema
model’’ of the SMS, which could not be expected to descr
realistic systems in much detail since it neglected spa
variations of density correlations by restricting to a sing
wave number. Despite this drastic simplification, the sc
matic model exhibited some interesting features and t
gered new experimental and theoretical research@8,9#.

Here we present a new MCT study of the SMS, which,
contrast to the earlier investigations, includes the comp
wave-number dependence, allowing for a realistic accoun
the SMS glass transition as a prototype of the glassifica
of ionic melts in general. A preceding analysis of the lo
density regime with this method has recently predicted
‘‘Wigner’’ glass phase of the SMS@10#, similar to the one
observed experimentally in colloidal@11# and plasma@12#
systems. In this paper, we concentrate on typical liquid d
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sities and demonstrate the large scope of experimentally
evant information that can be extracted from MCT. We ha
put special emphasis on the characteristic change of trans
coefficients like conductivity, shear viscosity, and diffusio
constant, in the vicinity of the transition. In particular, w
derive predictions on the validity of the Nernst-Einstein r
lation and obtain an effective particle radius from the Stok
Einstein relation. These are especially interesting points
cause there are contradictory results in literature@13–15#.

The paper is organized as follows: Following this intr
duction, we give a sketch of MCT for the SMS and of th
description of its dielectric and conductor properties in S
II. Our results are divided into two major parts, Sec. III o
the static properties obtained from the long-time limit, a
Sec. IV, which contains a discussion of time-depend
quantities. In Sec. V, we summarize and make some c
cluding remarks. Three rather technical paragraphs are
cluded as appendices.

II. FORMAL FRAMEWORK

A. Mode-coupling theory of the SMS

The central concept of MCT is the~classical! Kubo relax-
ation function defined by

FAB~ t !ªb^dA†~ t !dB&5~Aue2 iLtuB! ~1!

for two dynamical variablesA andB, where^ . . . & denotes a
thermal equilibrium average,dAªA2^A& andbª1/(kBT).
To simplify the notation, we have introduced Mori’s scal
product (AuB)ªb^dA†dB& in the vector space of dynamica
variables@16#, and the generator of time propagation, t
Liouvillian Lª i$H,•%. The thermodynamic limit is to be
taken at the end of the calculations.

We will consider a classical SMS, i.e., a two-compone
system of oppositely charged, but otherwise identical p
ticles. In addition to homogeneity, isotropy and tim
inversion symmetry, which are generally assumed for l
uids, the SMS is invariant under charge conjugation.
exploit this symmetry, we choose a description in terms
mass- and charge-density variables,M (q)ªAn/2@N(1)(q)
1N(2)(q)# and C(q)ªAn/2@N(1)(q)2N(2)(q)#, resp.,
where n5N/V is the mean-particle density. The variab
3136 © 1999 The American Physical Society
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N(s)(q)ª( j 51
N/2 exp@2iq•r j

(s)#/AN/2 is the number density o
speciess. We will be concerned with the Kubo relaxatio
functions of mass and charge,FM(q;t)ªFM (q)M (q)(t) and
FC(q;t)ªFC(q)C(q)(t), respectively. Obviously, charge
conjugation symmetry impliesFM (q)C(q)(t)[0.

Two formally exact equations of motion for these rela
ation functions can be derived by employing t
Mori-Zwanzig formalism@16,17#. It can be applied either to
the variablesN(1)(q) andN(2)(q), followed by a transforma-
tion of the relaxation functions as described in Appendix
or directly to M (q) and C(q). Either approach result
in the same two generalized-oscillator equations
motion, the Fourier-Laplace transforms~defined by
f (z):5 i*0

`dtexp(itz) f (t) for a function f ) of which read

Fs~q,z!52Fs~q;t50!Fz2
Vs

2~q!

z1Ks~q,z!
G21

,

sP$M ,C% ~2!

The initial conditions for the relaxation functions are det
mined by the mass- and charge-structure factors

FM~q;t50!5bnSM~q! →
q→0

n2kT , ~3!

FC~q;t50!5bnSC~q! →
q→0

e0q2/~Ze!2, ~4!

which, in turn, are obtained from the partial-density sta
structure factors viaSM(q)ªS11(q)1S12(q) and SC(q)
ªS11(q)2S12(q) in the case of the SMS.Ze denotes the
magnitude of charge of an individual particle, andkT is the
system’s isothermal compressibility. The characteristic f
quenciesVM

2 (q) andVC
2 (q) can also be expressed in term

of the static structure,

VM
2 ~q!ª

q2v th
2

SM~q!
→
q→0 q2

mnkT
, ~5!

VC
2 ~q!ª

q2v th
2

SC~q!
→
q→0

vpl
2 , ~6!

with the particle massm, the thermal particle velocity
v th:5(bm)21/2, and the plasma frequencyvpl

2
ª(Ze)2n/

(e0m). Within MCT, the relaxation kernelsKM(q,z) and
KC(q,z) are written as the sum of a regular and a mo
coupling contribution,

Ks~q,z!5Ks
reg~q,z!1Ks

MC~q,z!, sP$M ,C% ~7!

The regular contributions approach finite limits forz→0,
whereas the mode-coupling parts may show a sm
frequency singularity. The mode-coupling approximati
~MCA!, a derivation of which is given in Appendix A, lead
to expressions forKM

MC(q,z) and KC
MC(q,z) in terms of the

relaxation functions and the static structure,
,

f

-

-

-

ll-

KM
MC~q;t !5

v th
2

8b2n

1

V (
k

(
sm

dsm@kics~k!

1picm~p!#2Fs~k;t !Fm~p;t ! ~8!

KC
MC~q;t !5

v th
2

8b2n

1

V (
k

(
sm

~12dsm!@kics~k!

1picm~p!#2Fs~k;t !Fm~p;t !, ~9!

wheres andm take on the indicesM andC, andp abbrevi-
ates q2k. The transformed direct correlation function
cM(q)ªc11(q)1c12(q) and cC(q)ªc11(q)2c12(q), and
the notationkiªk–q/q have been introduced. Note that th
charge-density relaxation kernel exclusively contains cr
products of the formFMFC , while FMFM andFCFC only
appear in the mass-density relaxation kernel. This obse
tion was the basis of the schematic model for the SMS@4#.

Assuming the static structure to be known and the regu
part of the memory kernel to be negligible for long tim
near the glass transition, MCA’s~7!–~9! close equations of
motion ~2! and give rise to a pair of coupled nonline
integro-differential equations to be solved forFM(q;t) and
FC(q;t).

Formally, the two equations of motion~2! can be com-
bined into one by including the index for mass and charge
an ‘‘extended’’ wave-vector index,q̂ª(q,m), mP$M ,C%.
With these extended wave vectors, the equations of mo
take on the form of a one-component theory discussed
Ref. @2#. A glance at relaxation kernels~8! and~9! shows that
the vertex functions are non-negative and symmetric w
respect to the exchange (k,s)↔(p,m). These properties
guarantee that the analytical results from the one-compo
MCT @18# remain valid for the two-component SMS.

In view of later calculations, it is convenient to introduc
normalized relaxation functions via

fs~q;t !ª
Fs~q;t !

Fs~q;t50!
, sP$M ,C% ~10!

The long-time limits of these normalized functions,f s(q)
:5 lim

t→`
fs(q;t) for sP$M ,C%, vanish identically in the

liquid phase, while they are nonzero in the glass phase. T
are consequently referred to as nonergodicity parame
~NEPs!. A necessary condition for the NEPs can be obtain
by multiplying Eq.~2! with 2z and taking the limitz→ i0:

f s~q!

12 f s~q!
5

Ks
MC~q;t5`!

Vs
2~q!

, sP$M ,C% ~11!

Equation~11!, together with MCA relaxation kernels~8! and
~9!, are two coupled nonlinear integral equations, which
able the calculation of the nonergodicity parametersf M(q)
and f C(q).

Occasionally, we will use the relaxation function
Fss8(q;t)ªFN(s)(q)N(s8)(q)(t) of the number densities
N(s)(q). These relaxation functions can be obtained fro
FC(q;t) andFM(q;t) by linear combination,
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Fss8~q;t !5
1

2n
@FM~q;t !1~21!s1s8FC~q;t !#, ~12!

see Appendix B. Conventionally, they are normalized
@19#

fss8~q;t !ª
Fss8~q;t !

AFss~q;t50!Fs8s8~q;t50!
, ~13!

and the diagonal elements (s5s8) of the long-time limits
f ss8(q)ª lim

t→`
fss8(q;t) are referred to as Debye-Walle

factors.
The relaxation function of the number density of a sing

additional ‘‘tagged’’ particle of speciess51 or s52,
Fs(q;t)ªFN

0
(s)(q)N

0
(s)(q)(t), with N0

(s)(q)ªexp@2iqr0
(s)#, can

also be calculated within the framework of MCT. One fin
that it is given by an expression analogous to Eq.~2!,

Fs~q,z!52bFz2
q2v th

2

z1Ks~q,z!
G21

. ~14!

The memory kernel is again split up intoKs(q,z)
5Ks

reg(q,z)1Ks
MC(q,z), and the MCA yields@19#

Ks
MC~q;t !5

nv th
2

2b2

1

V (
k

ki
2

3 (
s,s851

2

css~k!Fss8~k;t !cs8s~k!Fs~p;t !

~15!

for the mode-coupling contribution, which dominat
Ks(q;t) at long times. Again we have setpªq2k. The
long-time limits f s(q)ªb21lim

t→`
Fs(q;t) of the ~normal-

ized! incoherent relaxation functions are the Lam
Mößbauer factors.

The transversal mass-current density relaxation ker
which determines the shear viscosity of the liquid, is o
tained by transforming Eq.~34! of Ref. @20# into mass/
charge-variable form. One finds

K'
MC~q;t !5

v th
2

8b2n

1

V (
k

(
sm

dsm@k'cs~k!

2p'cm~p!#2Fs~k;t !Fm~p;t ! ~16!

within MCT. Note the similarity to the longitudinal kerne
Eq. ~9!, and that no further approximations were necessa

B. Description of dielectric properties

The~longitudinal! dielectric functione(q,v) and the con-
ductivity s(q,v) are among the generalized transport co
ficients that can be calculated once the density-relaxa
functions of the system are known. For any isotropic a
homogeneous system of charged particles one has@21#
y

l,
-

.

-
n

d

e~q,v![11 i
s~q,v!

e0v

5
1

12
FC~q;t50!

e0q2/~Ze!2
@11vfC~q,v1 i0 !#

. ~17!

We note that a conductor-insulator transition is expected
be associated with the liquid-glass transition of the SM
since the charge-carrying particles become localized. N
the transition, both conductivity and permittivity will exhib
a behavior qualitatively different from that known for simp
Drude conductors or the well-known Debye dielectrics.
order to appreciate the results derived from MCT, it is use
to have in mind a simple model of the charge-current rel
ation kernelKC(q;t), which will reduce to the well-known
textbook models~Drude, Debye! in limiting cases. For this
purpose, we rewrite Eq.~17! by inserting the generalized
oscillator equation of motion~2!. We will make use of the
f-sum rule, which takes on the formVC

2 (q)FC(q;0)
5e0q2vpl

2 /(Ze)2 here, and introduce three abbreviation
The normalized~reduced! current relaxation kernel,

k̃~q;t !ª
KC~q;t !2KC~q;`!

KC~q;0!2KC~q;`!
~18!

as well as its Fourier-Laplace transformk̃(q,z), the static
dielectric function

est~q!ª lim
v→0

e~q,v!5
1

12
FC~q;0!

e0q2/~Ze!2
@12 f C~q!#

~19!

511
vpl

2

VC
2 ~q!2vpl

2 1KC~q;`!

→
q→0

11
vpl

2

KC~ t5`!
5:est, ~20!

and its high-frequency analogue

e`~q!ª11
vpl

2

VC
2 ~q!2vpl

2 1KC~q;0!
→

q→0

11
vpl

2

KC~ t50!

5:e` . ~21!

A theoretical determination of the latter quantity requir
knowledge of the total spectral weightKC(q;0)
52/p*0

`dvKC9 (q,v). If the spectrum KC9 (q,v)
ªIm@K(q,v1 i0)# has its weight at very low frequencie
v,vmax!v`!vpl only, i.e. if KC9 (q,v)'0 for v.vmax,
the above quantity will be measurable as the ‘‘hig
frequency dielectric constant,’’e`(q)5e(q,v`).

From equation of motion~2! together with Eqs.~17!–~21!
one finds for the response to a homogeneous (q→0) external
field of frequencyv,
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e~v![11 i
s~v!

e0v

512vpl
2 H v22

vpl
2

est21
1

vpl
2 @est2e`#

@est21#@e`21#
v k̃~v

1 i0 !J 21

. ~22!

Note that we indicate the (q50) limit of a function by sim-
ply omitting the variableq in the list of arguments. The form
of Eq. ~22! will remain valid for all q.0.

A very simple model for the charge-current relaxati
kernelKC(t) is the sum of a slowly decaying contribution o
relative weightf̃ ,1 ~relaxation timet1) and a quickly de-
caying contribution of relative weight@12 f̃ # ~relaxation
time t2):

KC~ t !'KC~ t50!@ f̃ e2utu/t11~12 f̃ !e2utu/t2#. ~23!

For finite relaxation times (̀ .t1.t2.0), this Ansatz will
model aconductor. The relaxation kernel will vanish fort
→` resulting in a divergent dielectric constantest5` and a
finite dc-conductivity

s05e0vpl
2 $KC~ t50!@ f̃ t11~12 f̃ !t2#%21. ~24!

While for f̃ 50 and a short relaxation time (vplt2!1) the
above Ansatz describes a Drude conductor to a good
proximation,

s~v!'s~v!Drude
ª

s0

12 ivt
~25!

with tª@KC9 (v50)#215@KC(t50)t2#21; strong devia-

tions from Drude behavior can be achieved forf̃ .0 and
large relaxation timest1 and t2. In particular, the dc con-
ductivity will vanish like s0}t1

21 if the larger relaxation
time is increased tovplt1@1. This gives a crude descriptio
of what is to be expected when the system is approaching
glass transition. The transformation to a glass associated
a conductor-insulator transition of the model will be com
pleted whent15`. According to Eq.~24! thens050, and a
finite dielectric constantest is implied by KC(t5`)
5 f̃ KC(t50).0. In this case the normalized relaxation ke
nel corresponding to Eq.~23! reduces to the simple Deby
form

k̃~ t !5exp~2utu/t2!⇔v k̃~v1 i0 !5
1

12 ivt2
21, ~26!

and it is straightforward to show that, for sufficiently sma
frequencies (v!vpl) and large relaxation times (vplt2@1),
Eq. ~22! will reduce to the well-known Debye form

e~v!'e~v!Debye
ªe`1~est2e`!

1

12 ivtD
~27!

with the Debye relaxation timetDªt2(est21)/(e`21).
p-

he
ith

It is well known that the simple Ansatz, Eq.~23!, usually
fails to describee(v) and s(v) for supercooled liquids.
These systems exhibit very slow nonexponential decay
k̃(t). Much better fits to the relaxation behavior of a sup
cooled liquid can be achieved with a modified Ansatz@22#,

v k̃~v1 i0 !5 f̃ F 1

~12 ivt1!b1
21G1~12 f̃ !

3F 1

11~2 ivt2!bv
21G ~28!

and est5`, corresponding to an extremely slowly decayin
contribution of the Cole-Davidson type (t1@t2 and 0,b1
,1) and a faster relaxing term of the Cole-Cole ty
(vplt2@1 and 0,bv<1). Here the Cole-Cole exponentb2
has been replaced by the frequency-dependent exponenbv

ªb21(12b2)/(11v2ts
2), in order to guarantee the corre

analytical behavior of the relaxation kernel in the limitv
→0. To avoid a disturbance of theb relaxation,ts@t2 must
be chosen; we foundts5103At1t2 to be reasonable.

The model Eq.~28! results in a dielectric function, the
real part of which exhibits three different plateaus~when
plotted versus log10@v#),

Re@e~v!#'H e I for vpl@v@t2
21@t1

21

e II for vpl@t2
21@v@t1

21

e III for vpl@t2
21@t1

21@v.

~29!

While in the high-frequency region one recoverse I'e` as
expected from the discussion following Eq.~21!; one finds a
larger value

e II5est
c
ªe`1~e`21!

12 f̃

f̃
~30!

for intermediate frequencies. The height of this plateau
be identified with the dielectric constantest

c[e(v50) ex-
pected at the transition, since the insulator conditiont15`
in this case extends the intermediate region down tov50
suppressing the formation of a third plateau. This impl
that, at the transition point, the second plateau extends o
ln v52` and its value is the critical dielectric constant. A
long ast1,`, however, an even larger plateau is created
the limiting value

e III 5 lim
v→0

Re@e~v!#5est
c 1~est

c 21!
12b1

2b1
~31!

for very low frequencies (vt1!1) as long asb1,1. The
value ofe III follows from the low-frequency expansion of th
model Eq.~28!,

e~v!5 i
s0

e0v
1econd1O„~vplts!

2~vt1!ln@vt1#;vt1…

~32!

with the dc conductivitys0 e0(est
c 21)/(b1t1) and the

limiting value econd5 lim
v→0

Re@e(v)# (est
c 11)/21(est

c
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21)/(2b1), from which it can also be seen that the diele
tric constant of the supercooled liquid has a diverging ima
nary part, while the real part approaches a finite limit.

The model Eq.~28! will be compared to the MCT resul
in Sec. IV D.

III. STATIC PROPERTIES

We have chosen to study the restricted primitive mo
~RPM! of an SMS, a model in which the particles are a
sumed to be hard spheres with diameters. Using the itera-
tion procedure described in Ref.@23#, the MCT equations of
the RPM for the long-time limitsf ss8(q) were solved nu-
merically on a mesh of 301 wave numbers. The input st
structure factors were taken from mean-spherical approxi
tion ~MSA! calculations@24#. The corresponding NEPs fo
the mass and charge density were then obtained from inv
ing Eq. ~12!. To check our calculations, we also solved E
~11! for the mass and charge density NEPs directly using
static mass- and charge-structure factors given explicitly
Appendix C, which yielded the same results, as expecte

A. Fluid-glass phase diagram

The liquid-glass phase diagram@10# obtained from the
NEPs is presented in Fig. 1 as a plot of the critical pack
fraction hcªpns3/6 as a function of the plasma parame
Gª2A3 h/T* , where T*ªkBT4pe0s/(Ze)2 is a rescaled
temperature.~The ~critical! packing fractionh (hc) intro-
duced here must not be confused with the shear visco
hs, used in Secs. IV C and IV G.! For high temperatures o
weak coupling (G→0), the critical density approaches th
limiting value hc'0.516 known from neutral hard-sphe
systems. At lower temperatures, e.g., atT* '0.01, we find a
reentrant phenomenon in the phase diagram: By isothe
expansion, the high-density glass ath'0.5 first melts as
expected. At some intermediate density, there is areentrance
into the glassy state. As the density is decreased even m
the glass finally melts again and remains in the fluid ph
for all lower densities, as can be seen from the log-log plo

FIG. 1. Fluid-glass phase diagram of the RPM~solid line! and
of neutral hard spheres~dashed line!. Dotted line:h(G) at constant
temperatureT* 50.01. Inset: Same curves in a log-log plot.
-
i-
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rt-
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n
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e
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the phase diagram shown in the inset of Fig. 1. Similar
entrant phenomena have been found in a theoretical m
coupling study ofscreenedcharged hard spheres@25# pro-
vided that the screening length was chosen sufficiently la
and in a theoretical investigation on macroionic suspensi
@26#. It was suggested that the second melting of the mac
ionic suspension could be caused by a strong screenin
charges, leaving only rather weak interactions between
ticles. In that work, the reentrant phenomenon was found
a phase diagram calculated solely from the structure fac
The explanation in terms of suchstatic screening properties
of the system is definitelynot valid in the present study
where the reentrant phase-transition line appears to be i
pendent of the peaks in the underlying static structure fac
This indicates the relevance ofdynamicalprocesses for an
explanation of the SMS reentrant behavior.

In the limit of very low densities, MCT predicts a struc
tural arrest of the fluid if temperature is sufficiently low@10#.
This effect relies on the long range of Coulomb interactio
A discussion of MCT for low-density Coulomb systems
given in another publication@27#.

B. Nonergodicity parameters

Some typical examples ofcritical NEPs, i.e., solutions of
Eq. ~11! along the phase transition line, are presented in F
2. In the high-temperature limit,f M(q) becomes the Debye
Waller factor of the neutral hard-sphere system known fr
Ref. @2#, while f C(q) approaches the corresponding Lam
Mößbauer factor. This can be understood from the fact t
SM(q)→SPY(q) andSC(q)→1 for high temperatures, wher
SPY(q) denotes the Percus-Yevick structure factor of an
charged hard-sphere system. This static structure imp
cC(q)[0 and cM(q)52cPY(q)ª2@12SPY(q)21#/n,
which, inserted into Eqs.~9! and ~8!, leads to the high-
temperature form

KM
MC~q;t !5

v th
2

2b2n

1

V (
k

@kicPY~k!

1picPY~p!#2FM~k;t !FM~p;t !, ~33!

FIG. 2. Critical NEPs of the RPM. Upper panel:f C(q) ~solid
line! and f M(q) ~dashed line! at (h'0.513, T* '0.312). Lower
panel: f C(q) ~solid line!, f M(q) ~dashed line!, and f 11(q) ~dot-
dashed line! at (h'0.0327,T* '0.0111).
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KC
MC~q;t !5

v th
2

b2n

1

V (
k

ki
2cPY~k!2FM~k;t !FC~p;t !,

~34!

for the relaxation kernels. The mass-density relaxation fu
tion FM(q;t) now rules the equations of motion for bo
charge- and mass-density relaxation. Thus, the glass tra
tion of the liquid will be driven by the arrest ofmass-density
fluctuations only. Physically, this is due to the fact that fo
large ratio of thermal to Coulomb energy, charge dens
becomes irrelevant for the particle dynamics and~especially
at higher densities! only hard-core interactions persist.
closer look at Eqs.~33! and ~34! reveals that they resembl
the MCT equations of an uncharged one-component sys
known from Ref. @2#. Therefore, in the high-temperatur
limit, the relaxation functionFM(q;t)/n ~the factor 1/n does
not appear in the equations for the normalized functions! will
approach the number-density relaxation function of a Perc
Yevick system, whileFC(q;t)/n becomes the correspondin
incoherent relaxation function. As a consequence,f C(q)
must approach the Percus-Yevick Lamb-Mo¨ßbauer factor
T* →`.

At lower temperatures,T* '0.01, the charge-density NE
exhibits a peak atq'q0/257/(2s), which is also visible in
the Debye-Waller factorf 11(q). It corresponds to an order
ing of charges and reflects the growing influence of Coulo
interactions as temperature decreases. This peak, which
a dominant feature of Debye-Waller factors measured in
ionic glass former 2Ca(NO3)23KNO3 ~CKN! @8#, could not
be reproduced by one-component models. The qualita
agreement of our SMS results with CKN scattering data s
gests that the SMS is, despite its relatively simple comp
tion, a useful model system for ionic liquids.

C. Static dielectric behavior

Via Eq. ~19!, the charge-density NEPf C(q) enables the
calculation of the wave-number-dependent dielectric scre
ing function est(q)ª lim

v→0
e(q,v). In the liquid, est(q) is

obviously completely determined by the charge-dens
structure factor. Idealized MCT predicts a jump ofest(q)
resulting from the discontinuity inf C(q) at the glass transi
tion. The dielectric screening function of the glass, which
shown in Fig. 3, is therefore a nontrivial result of MCT fo
multicomponent liquids. The range ofnegativevalues of
est(q) at intermediateq is in agreement with earlier theore
ical investigations of the liquid phase of systems of charg
particles @28#. A glance at the change ofest(q) along the
transition line shows that negative values appear only in
intermediate temperature and density region. According
Eq. ~20!, one findsest(q),0 if and only if Ṽ(q)ª@VC

2 (q)
1KC(q;`)#1/2,vpl . Thus, it is not surprising that, at ver
low densities, whereVC(q) increases monotonically with
increasingq starting withvpl at zero wave number, the d
electric function takes on positive values only. The~small!
positiveKC(q;`) then guarantees a positive dielectric fun
tion. In contrast, at high densities the strong charge orde
reflected in a pronounced first peak atq0'4.1s21 in the
charge-structure factor will result inVC

2 (q),vpl
2 according

to Eq.~6!. On the other hand, at high densities the nontriv
c-

si-
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frequency shift induced byKC(q;`) is large enough to com
pensate for the charge-ordering effect and restoreṼ(q)
.vpl .

The dielectric constantest(q50) of the RPM was pre-
sented in an earlier publication@10#. Recently, this quantity
has also been calculated in unsymmetrical systems, wh
depending on the system parameters, extremely high per
tivities and strong variations along the phase-transition l
are predicted from MCT@29#.

D. Lamb-Mößbauer factors and localization length

Our numerical results for the Lamb-Mo¨ßbauer factor
f s(q) can be approximated very well by simple Gaussia
everywhere in the glass phase. Similar results have b
found in previous MCT studies on other model syste
@2,30#.

An interesting quantity that can be calculated from t
Lamb-Mößbauer factor is the localization lengthr 0 of a
tagged particle,

r 0
2
ª

1

3
^@r0

(s)~ t5`!2r0
(s)~ t50!#2&52 lim

q→0

]2f s~q!

]q2
.

~35!

In the liquid, r 0
25` because the particle can freely mov

through the liquid by diffusion. The critical localizatio
length, i.e., the value ofr 0 on the glass side of the transition
is plotted in Fig. 4. This result enables a check of the e
pirical Lindemann criterion@31#, which states that a solid
should melt when the mean-square displacement of its
ticles exceeds 10% of the particle diameter. According to
results in Fig. 4, this statement holds for the liquid-gla
transition at high and intermediate temperatures and de
ties,h.0.1 andT* .0.01. A similar result was obtained fo
the neutral hard-sphere system@2# and for a Lennard-Jone
liquid @32#. However, the Lindemann criterion becomes vi
lated in the reentrant region of the phase diagram, and c
pletely fails to predict the melting of the Wigner glass,
which the localization length can be much higher than 0.s
@27#.

FIG. 3. Static screening functionest
c (q) of the RPM at melting.

Curves correspond to (h'0.509, T* '0.152) ~solid line!, (h
'0.503, T* '0.0864)) ~dotted line!, (h'0.477, T* '0.0326))
~dashed line!, (h'0.0743, T* '0.00995) ~dot-dashed line!, and
(h'0.00702,T* '0.0114~long dashed line!.
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E. Exponent parameter

An important quantity within MCT is the Go¨tze exponent
parameterl, which determines the exponents of the pow
laws appearing in the relaxation functions. For an effect
one-component system like the SMS, the definition ofl
found in Ref. @18# can be reinterpreted in view of the ex
tended wave-vector indices introduced in Sec. II A by repl
ing each wave-number integral by a conventional wa
number integral and a sum over the mass/charge index.

Using this prescription, we have determined the expon
parameter for all transition points, and plotted the result
function l(h) in Fig. 5. The characteristic exponentsa and
b, obtained fromlG(122x)5G(12x)2 with x5a and x
52b, respectively, are also shown in the figure. The fi
observation is that 1/2,l<1 for the RPM in the whole den
sity range studied. This result supports the conjecture tha
exponent parameter remains within these bounds for a l
class of model systems@33#. The fact thatl does not reach
unity implies that the underlying singularities are Whitn
folds @33# in the whole phase diagram. Ath'0.516,l ap-
proaches the limiting valuel50.735. This value is in agree

FIG. 4. Localization lengthr 0
c at melting as function of tempera

ture T* for the RPM~solid line!. Dotted line: Lindemann criterion
r 050.1s. Inset:r 0

c as a function ofh.

FIG. 5. Exponent parameterl of the RPM as a function of the
critical packing fractionhc . Characteristic exponentsa ~dotted line!
andb ~dashed line!.
r
e
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ment ~3% relative deviation! with the formerly found result
l50.758 for neutral hard spheres@34#.

IV. DYNAMICAL PROPERTIES

In this section we will discuss the solutions to the fu
time-dependent MCT equations. The partial density rel
ation functionsfss8(q;t) were calculated from the specia
ization of Eq.~A1! to the SMS, which is equivalent to solv
ing Eq. ~2! for FM(q;t) and FC(q;t). In all calculations
involving time-dependent quantities, 151 wave numbers
540 time-mesh points were used.

Of special interest is, of course, the behavior of the rel
ation functions as a transition point is approached from
liquid side. Since there are two thermodynamical parame
(h and T* ), each transition point (hc , Tc* ) can be ap-
proached on various possible paths in the phase diagram
have considered only two very simple ones: We either h
T* 5Tc* fixed and variedh, or heldh5hc fixed and varied
T* . It turns out that the choice of the path on which t
transition is approached does not have a qualitative effec
the behavior of the relaxation functions, so that we can co
pare results from different transition points even if they a
not approached in the same manner.

It must then be specified at which points on this path
relaxation functions are to be calculated. Since MCT pred
scaling laws}uh2hcux and }uT* 2Tc* ux with different ex-
ponentsx for many quantities~such as thea-relaxation time
scale!, it seems reasonable to choose packing fractionshn
with uhn2hcu/hc5a2n for some fixeda andn51,2, . . . , if
h is varied, or, correspondingly, temperaturesTn* with uTn*
2Tc* u/Tc* 5a2n if T* is varied. The choicea53 has proven
to yield an appropriate spacing between the relaxation fu
tions if they are plotted in a common figure.

A. Coherent density relaxation

It is known that the choice of the regular parts of t
relaxation kernel,KM

reg(q;t) andKC
reg(q;t), does not affect the

long-time behavior near the glass transition, but only
damping of initial oscillations and the overall time scale
the solution@33#. Therefore, choosing a physically reaso
able regular part will suffice for our purposes, keeping
mind that the short-time behavior and time scale may not
quantitatively correct. Because the regular part of the rel
ation kernel does not contain mode-coupling contributions
is assumed to decay quickly in time,Km

reg(q;t)
'2Gm(q)d(t) for mP$M ,C%. Momentum conservation re
quires GM(q)GC(q)}q2 for q→0 @20#, so that one has
GM(q)5gBr(qs)2 and GC(q)5gPl to lowest order inq,
where realistic values for the SMS aregBr'0.2vpl and gPl
'0.2vpl @35#.

In contrast to schematic models, the wave-number dep
dence incorporated in the present study allows new comp
sons with experiments studyingq-dependent quantities. Th
inset of Fig. 6, for example, shows thea-relaxation time of
the RPM at (h'0.5145,T* '0.5478) as a function of the
wave number. Qualitative agreement with CKN neutro
scattering data@8# is achieved. In particular, the strong fir
maximum, which could not be explained using schema
models or one-component systems, is correctly reprodu
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by the time scale obtained from the charge-densitya relax-
ation. This result strongly supports the view that it is due
the slowing down of relaxation ofcharge-density fluctua-
tions of the corresponding wavelength@8#.

Figure 6 shows the mass-density susceptibility spe
xM9 (q,v)ªvIm@fM(q,v1 i0)# at different temperature
approaching the glass transition. The individual functio
were rescaled so that the minima betweena andb relaxation
regions fall onto one point. The plot clearly shows t
asymptotic power-law solutions emerging on both sides
the minimum. The corresponding exponentsa and 2b
should, according to MCT, be independent of the wave nu
ber @18#—a prediction that was experimentally confirmed f
some glass-forming substances@3#, while studies on other
systems revealed strong deviations@36#. However, the power
laws are only asymptotic solutions close to the glass
transition singularity, and no statements on the range of t
validity can be derived from the asymptotic formulas. W
have, therefore, attempted to find this range for the SMS
putting much effort into the numerical calculations. Note,
example, that the equation of motion was solved in a ti
interval of 18 orders of magnitude, corresponding to rel
ation times ranging from picoseconds to over ten years.

The present study yields three major results concern
the validity of the asymptotic solutions. First, the range
validity strongly depends on the observed function. Wh
for example, the shear viscosity in Fig. 8 clearly shows b
power laws, the dynamical conductivity, Fig. 10, exhib
hardly anya-relaxation power law. Moreover, the power la
that appears already very far away from the transition is
power-law divergence of thea-relaxation time scaleta

}(T* 2Tc* )2g, for example, in Fig. 8. This theoretical resu
complies well with the fact that the power-law behavior
indeed observed experimentally in a range of temperat
starting rather far from the actual transition. Upon furth
cooling, other processes not included in the present the

FIG. 6. Mass-density response spectrumxM9 (q0 ,v), q0

54s21 ~solid line! as the transition at (hc'0.0127,Tc* '0.0116)
is approached. Curves correspond to (hc , Tn* ! with uTn* 2Tc* u/Tc*
532n and n52, . . . ,9. Thefunctions were rescaled so that th
b-minima coincide. Dashed line: Power-law asymptotes 0.61va

and 0.31v2b with a50.351 andb50.744. Inset: RPMa-relaxation
time ta as a function of the wave number at (h'0.5145, T*
'0.5478) obtained from inversea-peak position ofxM9 (q,v)
~solid line! andxC9 (q,v) ~dotted line!, respectively.
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~e.g., hopping diffusion! mask this power law and lead to
different temperature dependence, such as a Vogel-Ful
law.

Finally, Fig. 6 shows that the exponents of the power la
right and left of theb minimum become clearly visible only
very close to the transition. The attempt to determinea andb
from spectra too far away from the transition, e.g., forn
52 or 3, would obviously lead to a considerable error. T
result casts doubt on whether theb-minimum rescaling is
suitable for a precise determination of the exponent par
eter from experimental data.

B. Tagged particle relaxation

In the calculation of the tagged particle density relaxat
functions from Eqs.~14! and~15!, the regular memory kerne
was assumed to be of the formKs

reg(q;t)52Gs(q)d(t). The
magnitude ofGs(q) was found to affect the short-time be
havior of the tagged particle relaxation functions, and—
contrast to the coherentK reg(q;t)—not their overall time
scale.Gs(q)510vpl was chosen for the calculations, whe
the nonvanishing value atq50 reflects that the tagged pa
ticle momentum is not conserved.

Qualitatively,fs(q;t)ªFs(q;t)/Fs(q;t50) exhibits the
same behavior as its coherent counterparts. A more inte
ing quantity is the frequency-dependent diffusion coefficie
which can be obtained from the tagged particle relaxat
kernel by

Ds~v!5ImH 2v th
2

v1Ks~q50,v1 i0 !J . ~36!

This function has been plotted in Fig. 7. The high-frequen
behavior is dominated by a peak at microscopic frequenc
which is due to microscopic oscillations in short-lived cag
formed by next neighbors. In the frequency ranges ofb and
a relaxation, the diffusion constant exhibits power laws w
exponents 12b and 11a, respectively. Their appearanc
can be explained by the small-frequency behavior offs(q,z)

FIG. 7. Generalized diffusion coefficientD1(v) of the RPM as
(hc'0.5, Tc* '0.0716) is approached. Curves correspond to (hn ,
Tc* ) with uhn2hcu/hc532n and n51, . . .,10. Dashed line: power
law 10210 v12b10.039v11a with a50.311 andb50.580. Inset:
Diffusion coefficientDªD1(v50) ~circles! together with power
law 0.002@(hc2h)/hc#

g, g51/(2a)11/(2b)52.741.
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3144 PRE 60S. D. WILKE, H. C. CHEN, AND J. BOSSE
@18#. The inset of Fig. 7 shows the (v50)-diffusion constant
D as the glass transition is approached. It obviously
creases towards zero exhibiting the predicted power-law
havior with exponentg, i.e., D}(hc2h)g @18#.

C. Shear viscosity

The generalized shear viscosityhs(v) can be related to
the transversal current relaxation kernel by

hs~v!5mnlim
q→0

Im@K'~q,v1 i0 !#

q2
. ~37!

K'(q,v1 i0) has been calculated from Eq.~16! with
K'

reg(q;t)52G'(q)d(t). Similarly to the incoherent regula
relaxation kernel, G'(q) is found to affect the high-
frequency part ofhs only; G'(q)5vpl was chosen. A set o
generalized viscosities is plotted in Fig. 8. Clearly, the sh
viscosity hsªhs(v50) increases dramatically close to th
transition point, signaling the divergence of the viscosity a
critical temperatureTc* predicted by idealized MCT.hs(v)
}Im@KM

T (q,v)# is expected to show power-law behavior
the a- and b-relaxation regimes with the exponentsa21
and 2b21 @18#, respectively, which is reproduced by th
numerical solution shown in Fig. 8.

D. Dynamical dielectric properties

Having characterized the system’s response to static e
tric fields in Sec. III C, knowledge of the time-depende
relaxation functions enables the calculation of thefrequency-
dependentdielectric function of the supercooled liquid atq
50, e(v), via Eq. ~17!.

The real part ofe(v), which is plotted in Fig. 9, shows a
rather complex frequency dependence near the glass tr
tion. The resonance nearvpl can be attributed to plasm
oscillations. Following at lower frequencies, there appea
range of about two decades with very little variation ofe(v).
This is the high-frequency dielectric constante` introduced

FIG. 8. Generalized shear viscosityhs(v) ~solid line! as (hc

'0.0127,Tc* '0.0116) is approached. Curves correspond to (hc ,
Tn* ! with uTn* 2Tc* u/Tc* 532n andn51, . . . ,9. Dashed line, power-
law function 0.01va2111.4310211v2b21 with a50.351, b
50.744. Inset: Shear viscosityhs ~circles! together with power law
0.18@(T* 2Tc* )/Tc* #2g, g51/(2a)11/(2b)52.097.
-
e-

r

a

c-
t

si-

a

in Sec. II B. It is followed by two steps, corresponding to t
b- and a-relaxation processes. This qualitative behavior
low frequencies is in agreement with experiments, e.g.,
the glass former phenyl salicylate~salol! @37#.

On the other hand, the imaginary parte9(v) diverges for
v→0 in the SMS, while it approaches zero in the salol e
periment. This discrepancy must be attributed to the fact
salol is a liquid ofneutral, dipolar molecules with a vanish-
ing ~or extremely small! dc-conductivity, while the SMS
consisting of mobile charged particles still has an app
ciable dc conductivity in the supercooled phase. The o
dielectric response that a liquid of neutral molecules can p
form is the reorientation of the molecular dipole momen
which, at very low external field frequencies, happens wi
out a phase shift relative to the external field:e9(v)50 for
v→0. In the SMS, there are no permanent dipole mome
and thus the response to static fields will be a separatio
charges. The SMS liquid can, therefore, completely scr
off any external field, which implies an infinite (v50) value
of the dielectric function.

The plot also allows a comparison of the models of
electric behavior discussed in Sec. II B. Obviously, t
simple Ansatz Eq.~23! is only a very crude approximation o
the dielectric function not capable of describing the two-s
relaxation behavior as it corresponds to the special caseb1
51 of the more general model Eq.~28!.

To match the more elaborate empirical formula Eq.~28!
~which was recently successfully used to fit experimen
data @22#! to our MCT calculation, we now determine th
parameters of this ansatz for then511 MCT solution. The
plateau valuese`'1.07, est

c'1.85, ande'2.67, are taken
from Fig. 9 and the dc conductivitys0 /(e0vpl)51.9
310215 from Fig. 10. These values then fix the paramet
t1 ,b1, and f̃ of the model Eq.~28! via Eqs.~30! and ~32!

yielding t151.3131015/vpl , b150.342, andf̃ 50.082. For
the shorter relaxation time we estimatet2'1.2/vpl from Fig.
9 „or from a plot of Im@e(v)#…, and finally, for the Cole-
Cole exponent we chooseb25a50.311, because it is

FIG. 9. Real part of dielectric functione(v) of RPM as (hc

'0.5, Tc* '0.0716) is approached. Curves correspond to (hn , Tc* )
with uhn2hcu/hc532n and n51, . . .,11. Dashed horizontal line
expected critical dielectric constantest

c 51/f C(q50); dotted line,
Debye model Eq.~23!; dot-dashed line, extended model Eq.~28!;
inset: same data in as Cole-Cole plot.
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known that in theb-relaxation region the MCT solution fo
the charge-density response takes on the Cole-Cole form@7#.
The resulting curve presents a very reasonable fit to the M
solution. This is not only true fore8(v) but—with the same
set of parameter values—it is also true fore9(v) as well as
for s(v). Especially in theb region 1023.v/vpl.1029,
the model gives a perfect description of the MCT results.
note, however, that the exponentb1, which is determined by
the two plateau valuese II ande III , does not come out to b
equal to the MCT exponentb. This demonstrates that in th
a-relaxation region the MCT solution does not take on
Cole-Davidson form exactly~in contrast to the Cole-Cole
form of theb-relaxation region!.

The inset of Fig. 9 shows the dielectric function in a Co
Cole diagram, where the complexe(v)5e8(v)1 ie9(v) is
plotted as a path in the (e8,e9) plane by varying the fre-
quencyv. At intermediate frequencies, the Cole-Cole p
exhibits a ‘‘squeezed’’ half circle typical for the stretche
relaxation of glass-forming liquids. The simple exponent
~Debye! relaxation of charge-density fluctuations corr
sponds to the circle included in the figure. The stretchedb
relaxation leads to a much flatter Cole-Cole plot than p
dicted by a Debye model. Note that the right wing of t
Cole-Cole plot may be extrapolated onto the abscissa to
tain the critical dielectric constantest

c'1.85. On the left side
of the Cole-Cole plot, the curve approaches the hi
frequency dielectric constante` before it exhibits an addi-
tional circle corresponding to the plasma resonance. M
experiments measure the dielectric function at frequen
below this resonance only.

E. Dynamical conductivity

Figure 10 shows the real part of the dynamical conduc
ity obtained from the dielectric constant via Eq.~22!. The dc
conductivitys0ªs(v50) vanishes as the glass transition

FIG. 10. Real part of dynamical conductivitys(v) of RPM as
transition point (hc'0.5, Tc* '0.0716) is approached. Curves co
respond to (hn ,Tc* ) with uhn2hcu/hc532n and n51, . . . ,11.
Dashed line, Power law 5.1va1112.531029v12b with a50.311
and b50.580. Dot-dashed line, Conductivity obtained from e
tended model Eq.~28!. Inset: dc conductivitys0 ~circles! as a func-
tion of distance from the transition. Solid line, Power la
0.02@(hc2h)/hc#

g, g51/(2a)11/(2b)52.741.
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approached. Its behavior close to the transition is again gi
by a power law with exponentg, which is shown in the inse
of Fig. 10. The plot shows that various power laws domin
the frequency dependence ofs(v). They can be understoo
analogously to the power laws in the diffusion coefficie
@18#. One finds the exponents 11a and 12b, which are
clearly reproduced by our numerical result. Although t
RPM is the simplest possible two-component model for
ionic liquid, qualitative agreement is achieved with measu
ments on real ionic glass formers~e.g.,@38,39#!. It is obvious
that the frequency dependence of the conductivity is v
similar to that of the diffusion coefficient in Fig. 7. Thi
point will be discussed in the next section.

F. Nernst-Einstein relation

The Nernst-Einstein relation is based on the assump
that cross correlations of the velocities of different partic
can be neglected@40#. This results in a relation between con
ductivity and diffusion coefficient,

s~v!5
n~Ze!2

kBT
D~v!~12D!. ~38!

The quantityD is a~possibly frequency-dependent! deviation
parameter, which has been determined experimentally
several molten salts. Forv50, it was found to take on
mostly positive values, for example, 0.08 for NaI or 0.43 f
LiNO3 @41,40#.

Since MCT yields thatD and s0 both vanish as (T*
2Tc* )g near the transition temperatureTc* , it is clear that
idealized MCT predictsD}s0. Next to this result, there are
two interesting questions that may be answered by our
culation. The first is in how far the frequency dependence
D(v) will be the same as that ofs(v), and the other is
whether MCT is able to predict reasonable values for
deviation parameterD in the RPM.

Figure 11 shows the deviation parameterD as a function
of frequency. A first observation is that—except at micr

FIG. 11. Deviation parameterD of the RPM as a function of
frequencyv as (hc'0.5, Tc* '0.0716) is approached. Curves co
respond to (hn ,Tc* ) with uhn2hcu/hc532n and n51, . . . ,10. In-
set: D as (hc'0.0127,Tc* '0.0116) is approached. Curves corr
spond to (hc ,Tn* ) with uTn* 2Tc* u/Tc* 532n andn51, . . . ,9.
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scopic frequencies—it is only very weakly frequency dep
dent. This corresponds to the statement that MCT predic
rather general validity of Eq.~38! for a large range of fre-
quencies even close to the glass transition. The weak
quency dependence may be understood analytically by
sidering that MCT predicts the same power-law expone
for D(v) ands(v) in the a- andb-relaxation regime. The
deviation parameter takes on values of about 0.07, . . .,0.5
depending on the separation from the glass transition, wh
is in agreement with the experimental values mention
above.

Deeper in the liquid (n51), the deviation parameter i
rather large,D'0.6, and it clearly decreases as the transit
is approached. This result may be interpreted in terms of
formation of short-lived ionic complexes, which contribu
only to the diffusive flux but not to the electric current@40#.
The probability for a particle to be dragged along by anot
one of opposite charge is obviously higher in the ‘‘norma
liquid than in the highly viscous supercooled state. Thus,
conductivity should be comparably smaller far away fro
the transition, resulting in a rather large deviation parame
D.

The above results forD are confirmed in another calcula
tion at a lower density shown in the inset of Fig. 11. T
only difference is thatD is generally shifted towards smalle
values. In particular,D is negative near this transition poin

G. Stokes-Einstein relation

The Stokes-Einstein relation establishes a connection
tween diffusion coefficient and shear viscosity. It reads

D5
kBT

hsBR
, ~39!

where the quantityB is a numerical constant (B54p for
‘‘slip’’ and B56p for ‘‘stick’’ boundary conditions at the
surface of the diffusing particle! andR is the Stokes-Einstein
radius of the particles. Equation~39! was originally derived
for the diffusion of a large Brownian particle@42#, but turned
out to be a good approximation even for self-diffusion
viscous liquids, i.e., whenR is the particle or molecule ra
dius.

Near the glass transition, however, the Stokes-Einstein
lation tends to underestimate the diffusion constant for so
glass formers. These deviations from Eq.~39! may be inter-
preted as deviations of an effective~Stokes-Einstein! radius
R from the particle radiuss/2. While a molecular-dynamics
study of a supercooled binary soft-sphere system showeR
's/2 until the hopping diffusion regime was reached@14#,
other investigations~cited e.g., in Ref.@13#! reported system-
atic deviations of the Stokes radius from the particle rad
An ad-hoc modification suggested to remedy this failu
leads to the fractional Stokes-Einstein relationD}(T/h)j

with 0,j<1 @43#.
Within the framework of MCT,D and hs are calculated

separately along different lines. It is, therefore, predesti
for giving nontrivial results on the Stokes-Einstein radiusR
near the glass transition. The MCT power-law expone
governing the behavior ofD and 1/hs close to the transition
@18# guarantee that our results onR will converge towards a
-
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constant as a glass-transition point is approached~i.e., j
51). We argue that hopping diffusion, which is neglected
the idealized MCT used here, may cause deviations~such as
exponentsj,1) from this behavior close to the transition
real systems.

We have calculated the MCT estimate of the Stok
Einstein radius at the high- and intermediate-density gl
transition of the SMS. While its value at the high-dens
transitionh'0.5 is approximately equal to the hard-core r
dius (R'1.46s/2 for B56p), there are strong deviations a
the lower-density transition nearh'0.01, where R
'58.1s/2. Extremely large Stokes radii have recently al
been found in a MCT study of a one-component charg
hard-sphere system with neutralizing background@27# and
appear to be a typical feature of low-density Coulomb s
tems. The effective ‘‘inflation’’ of the charged particles ca
be interpreted as a result of the long-ranged Coulomb for
dominating the interaction at low densities. Our results s
gest that, at lower temperature and density, diffusion a
shear viscosity of supercooled Coulomb liquids will exhib
properties similar to those of nonsupercooled liquids w
much larger particles.

V. CONCLUSION

In this paper we have discussed the glass transition of
RPM, a symmetrical binary mixture of charged hard sphe
using MCT. The full wave-number-dependent MCT equ
tions for a SMS were shown to be formally equivalent
those of MCT for aone-componentliquid. The numerical
solutions obtained in our calculations could, therefore,
checked using the predictions derived from one-compon
MCT. A number of interesting results were obtained for t
RPM glass transition.

~a! The RPM glass transition at high densities is predic
to occur at a localization length of about 10% of the parti
diameter, confirming Lindemann criterion for melting.

~b! The exponent parameterl, which could be determined
only at single transition points in MCT studies so far, w
calculated along the whole phase transition line. It is fou
to vary continuously between 0.8 and 0.6.

~c! The double-peak structure of the Debye-Waller fac
and of the primary relaxation time of the ionic glass form
CKN were qualitatively reproduced by the RPM calcul
tions.

~d! The Nernst-Einstein relation~and its frequency-
dependent generalization! are predicted to be fulfilled for the
RPM near the glass transition.

~e! The MCT results at high densities show good agr
ment with the Stokes-Einstein relation. At lower densitie
MCT predicts a Stokes radius that exceeds the hard-core
dius by a factor of about 50. Similar results have been
tained in a recent study on a hard-sphere jellium fluid@27#,
which indicates that they are related to the long-ranged C
lomb interaction. We argue that these qualitative results
relevant despite the use ofidealizedMCT in our study, since
they remain valid in the nonasymptotic region further aw
from the transition, which idealized MCT is widely accepte
to describe accurately.

This paper has given a detailed account of the MCT
sults for the glass transition of the SMS. However, it is s
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only a starting point for the investigation of more gene
supercooled ionic mixtures. Much work remains to be do
in this field analytically as well as numerically, but we b
lieve that the study of these systems will be rewarding in t
ways: On the one hand, it is hoped to lead to progress in
physically and technologically interesting field of ionic liq
uids and glasses. On the other hand, the application of es
lished theories for simple liquids~such as MCT! to ionic
multicomponent systems provides a means of testing,
possibly improving, the theoretical basis of our understa
ing of the glass transition.
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APPENDIX A: ‘‘SHORTCUT’’ DERIVATION
OF MODE-COUPLING APPROXIMATION

This section contains an oversimplified derivation of t
MCA for multicomponent liquids. A much more elabora
approach, which, however, yields the same result, can
found in Refs.@44,7#.

We will formulate the derivation for a classica
S-component liquid, which we assume to be homogene
and isotropic. Its particles~of speciess and s8) interact
via a rotationally invariant, additive pair potentialvss8(r ).
We will use the partial number densitiesN(s)(q)
ª( j 51

Ns exp@2iq•r j
(s)#/ANs as the basic variable set. Via th

Mori-Zwanzig projector-operator formalism@16,17#, a for-
mally exact generalized-oscillator equation of motion for t
matrix of relaxation functionsFss8(q,z) ~see Sec. II A for a
definition! is derived,

F~q,z!52Fz1
21

z1K~q,z!
V2~q!G21

F~q;t50!,

~A1!

with the frequency matrixVss8
2 (q)ªq2/bms@S(q)#ss8

21 and
the relaxation kernel matrix

Kss8~q,z!ª (
s51

S FN(s)~q!UL 2
Q

QLQ2z
L 2UN(s)~q!G

3@V2~q!21#ss8 ~A2!

5ms„Ji
(s)~q!uLQe2 itLQLuJi

(s8)~q!…, ~A3!

where L denotes the Liouvillian, J(s)(q):5
( j 51

Ns q•pj
(s)exp@2iq•r j

(s)#/(qAmsNs) is the longitudinal cur-
rent density, andms is the mass of a particle of speciess. The
operatorQ introduced in Eq.~A2! is a projector onto the
subspace orthogonal to that spanned by allN(s)(q) and
LN(s)(q) in the space of dynamical variables. Equation~A3!
was obtained by employing the continuity equation and
f-sum rule. The (t50) value of the relaxation functions ca
be expressed in terms of the partial density static struc
factors,F(q;t50)5bS(q).

The next step is to replace the two outer Liouville ope
tors in Eq. ~A3! by their potential partLpotª i$Hpot,•%,
l
e

o
e

b-

nd
-

e-

e

s

e

re

-

where Hpotª(s,s851
S

( i 51
Ns ( j 51

Ns8 vss8(ur i
(s)2r j

(s8)u)/2 is solely
due to interaction effects. At times exceeding the mic
scopic time scale,Lpot is expected to play the dominant role
while the effect of the remaining free-particle LiouvillianL
2Lpot may be neglected. The variableLpotJi

(s)(q)
can be evaluated explicitly to yield
2(k(s51

S ANskivss(k)N(s)(q2k)N(s)(k)/(Vms), where
the symmetry of the interaction potential,2vms(k)5vms

(2k)5vsm(2k), has been used. The bare interaction pot
tial is then screened byvss8(q)'2kBTcss8(q). The last step
is to eliminate the two-mode variables that originate fro
LpotJi

(s)(q). Since we will be interested in the long-time b
havior of relaxation functions and friction kernels, a facto
ization of the two-mode correlations appearing in the rel
ation kernel,

b@N(s)~q2k!N(s)~k!uQe2 itQLQuN(s8)~q2p!N(s8)~p!#

'Fss8~ uq2ku;t !Fss8~k;t !dp,k

1Fss8~ uq2ku;t !Fss8~k;t !dp,q2k ~A4!

seems appropriate. Note that the effect ofQ was restricted to
the projection onto the subspace of two-mode variables.
result is a relaxation kernel of the form

Kss8
MC

~q;t !'
1

b3ms

1

V (
k

(
s,s851

S

@ki
2Anscss~k!

3Ans8cs8s8~k!Fss8~ uq2ku;t !Fss8~k;t !

1ki~q2ki!Ans8cs8s8

3~ uq2ku!Anscss~k!Fss8~ uq2ku;t !

3Fss8~k;t !#. ~A5!

This relaxation kernel contains mode-coupling contributio
only. All other influences are summarized in a regular p
K reg(q;t),

K~q;t !5K reg~q;t !1KMC~q;t !, ~A6!

which is assumed to decay very quickly in time. Equati
~A5! is equivalent to the matrix Eq.~31! of Ref. @20#.

A simplified version of the MCA for the tagged particl
and for the transversal current relaxation kernels can
found in complete analogy to the derivation presented abo

APPENDIX B: TRANSFORMATION
OF BASIS VARIABLES

In this appendix we collect the formulas for the transfo
mation of MCT equations from partial number densities
another set of basis variables.

Instead of the variablesN(s)(q), a set A(s)(q):
5(s8N

(s8)(q)@T†(q)#s8s of linear combinations of the par
tial densities will now be considered. The transformation m
trix T(q) is required to be nonsingular. Then, the corr
sponding matrix of relaxation functionsF̌ss8(q;t)
ªFA(s)(q)A(s8)(q)(t) is given by
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F̌~q;t !5T~q!F~q;t !T†~q!. ~B1!

The equation of motion for the matrixF̌(q,z) will have the
same form as Eq.~A1!,

F̌~q,z!52Fz1
21

z1Ǩ~q,z!
V̌2~q!G21

F̌~q;t50!,

~B2!

only with transformed frequency matrix and memory kern

V̌2~q!5T~q!V2~q!T~q!21, ~B3!

Ǩ~q,z!5T~q!K~q,z!T~q!21. ~B4!

Note that, sinceT(q) is nonsingular, the projection operato
Q in Eq. ~A2! does not depend on the specific linear com
J.

d
de
-
.

ie

r-
l,

-

nationA(s) of the partial densities. Consequently, the reduc
evolution operatorQe2 itLQ is also independent of the choic
of the linear combination. Therefore, merely the relaxat
functions appearing in Eq.~A5! have to be transformed ac
cording to Eq.~B1! to obtain a new MCA relaxation kerne
in terms of the transformed relaxation functions.

APPENDIX C: STATIC STRUCTURE OF THE RPM

In this appendix we include the RPM static structure fa
tors within the MSA@24# for reference. For the SMS, th
implicit equation to be solved for the MSA static structure
general charged two-component systems is trivial, so that
SMS structure factors can be given in explicit form. T
charge-structure factor depends onh/T* only. Abbreviating
q̂ªqs ~wheres is the hard-sphere diameter!, xª96h/T* ,

andwª
A11Ax21, one finds
SC~ q̂!5
q̂4/2

2q̂424w224w31x12w3q̂ sin~ q̂!1~4w214w32x12q̂2w2!cos~ q̂!
~C1!

5
q̂2

x
F11

q̂2

12x
~x248120w214w3!1O~ q̂4!G . ~C2!

The mass structure factor is temperature-independent:

SM~ q̂!5@ q̂6~h21!4#$q̂6~h21!4172h2@ q̂2~21h!214~112h!2#212h cos~ q̂!@24h~112h!226q̂2h~7h214h22!

1q̂4~h21!2~h12!#124hq̂ sin~ q̂!@ q̂2~h21!~5h215h21!212h~112h!2#%21 ~C3!

5
~h21!4

~112h!2
1

h~h21!4~4h2211h116!

20~112h!4
q̂21O~ q̂4!. ~C4!
.
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@21# P. C. Martin, inProblème àN Corps, edited by C. de Witt and

R. Balian, Gordon and Breach, New York, 1968!, p. 37.
@22# M. Soltwisch, G. Ruocco, B. Balschun, J. Bosse, V. Mazza

rati, and D. Quitmann, Phys. Rev. E57, 720 ~1998!.
@23# W. Götze and L. Sjo¨gren, J. Phys. C21, 3407~1988!.
@24# E. Waisman and J.L. Lebowitz, J. Chem. Phys.56, 3093

~1972!.



v

er

.

PRE 60 3149DIELECTRIC AND TRANSPORT PROPERTIES OF A . . .
@25# S.K. Lai, W.J. Ma, W.van Megen, and I.K. Snook, Phys. Re
E 56, 766 ~1997!.

@26# S. Khan, T.L. Morton, and D. Ronis, Phys. Rev. A35, 4295
~1987!.

@27# S.D. Wilke and J. Bosse, Phys. Rev. E59, 1968~1999!.
@28# A. Chandra and B. Bagchi, J. Chem. Phys.91, 3057~1989!.
@29# H. C. Chen, S. D. Wilke, and J. Bosse, Phys. Rev. B~to be

published!.
@30# U. Bengtzelius, Phys. Rev. A34, 5059~1986!.
@31# F.A. Lindemann, Phys. Z.11, 609 ~1910!.
@32# U. Bengtzelius, Phys. Rev. A33, 3433~1986!.
@33# W. Götze, inLiquids, Freezing, and the Glass Transition, ed-

ited by D. Levesque, J. P. Hansen, and J. Zinn-Justin,~North-
Holland, Amsterdam, 1991!, Vol I, p. 289.

@34# J.L. Barrat, W. Go¨tze, and A. Latz, J. Phys.: Condens. Matt
1, 7163~1989!.

@35# J. Bosse and T. Munakata Phys. Rev. A25, 2763~1982!.
. @36# A. Hofmann, F. Kremer, and E.W. Fischer, Physica A201,
106 ~1993!.

@37# P.K. Dixon, L. Wu, S.R. Nagel, B.D. Williams, and J.P
Carini, Phys. Rev. Lett.65, 1108~1990!.

@38# R. Bose, R. Weiler, and B. Macedo, Phys. Chem. Glasses11
~1970!.

@39# K. Funke, J. Hermeling, and J. Ku¨mpers, Z. Naturforsch., A:
Phys. Sci.43, 1094~1988!.

@40# J.-P. Hansen and I.R. McDonald, Phys. Rev. A11, 2111
~1975!.

@41# N. H. March and M. P. Tosi,Coulomb Liquids, ~Academic
Press, London, 1984!.

@42# A. Einstein, Ann. Phys.~Leipzig! 17, 549 ~1905!.
@43# A. Voronel, E. Veliyulin, V.Sh. Machavariani, A. Kisliuk, and

D. Quitmann, Phys. Rev. Lett.80, 2630~1998!.
@44# J. Bosse, Nuovo Cimento A12, 481 ~1990!.


